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Abstract

We presentthe calculationof the beam-beantune shift and
dynamical beta function for PEP-Il as a function of the
fractional tune and the beam separationat the parasitic
collision (PC) points. We do the calculatiboth for “typical”

and for “pacman” bunches taking into account all the PCs.

1 INTRODUCTION

If the beam-beanmteractionis relatively weak, asis the case
for most colliders, one can asseiss|inear approximation,its
most basic constraint on the choice of the worlpoint. This
constraint is absolutely necessary, although far fsafficient,
for acceptable luminosity performance. Obviously this
approximation is insensitive to all synchro-betatron
resonances, and to all betatron resonances excepttbagbe
integer and half-integer tunes.

Thereare threewell-known consequencethat follow from
the linear approximation:(1) stopbandsearinteger and half-
integer tunesappear;(2) the tune shift producedby the beam-
beamcollision is significantly different from the beam-beam
parametemear the edgesof the stopband;and (3) the beta
function at the IP is different from its nominally-specified
value (this is the so-called“dynamical beta function” effect).
We computeherethe edgesof the stopbandsthe beam-beam
tune shifts andthe dynamicalbetafunctionsat the IP for the
specific case of PEP-II, as a function of tune.

The PEP-II design[1] calls for head-oncollisions with
magnetic separation ithe horizontalplane.As a result, there
are four PCs on either side of the IP. If the beam were
uniformly populated, the tune shift and dynamical beta
function would be the samefor all bunches.However, the
existence of anon-clearinggapimplies that thosebunchesat
the head and the tail of the train (dubpdcman”bunches)o
not experience alPCs. For this reasonthesebuncheshavea
different tune shift and dynamical beta function from the
bunchesaway from the ends of the train (dubbed “typical”
bunches). In our calculation wiake into accountall the PCs,
and we presentresults both for typical and for pacman
bunches. This article summarizes Ref. [2].

2 CALCULATION IN LINEAR THEORY

Each beam-beancollision, whetherit is head-onor long-
range, is characterizedin lowest order by a beam-beam
paramete€ which measureits strengthas experiencedy the
particle at the center of the bunch. In the small-amplitude
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approximation it is described by the kick matrix
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wheref3, is the lattice beta-function at the collision paint
We assume that the lattice is linear and thateis no x-y
coupling, so that we can treat therizontalandvertical phase
spacesseparatelyin the two rings. We label the parasitic
collisions n=1,---,4 or n=-4,---,-1 asshownin Fig. 1,
and n=0 is the main collision at the IP. With this
convention, the one-turn mdpr a particle correspondingo a
surface of section immediately before the IP is given by

M'(0) = M(0,-)K(-1)---K(-4)
x M(-4,4)K(4)---K(Q)M(1,0)K(0) (2)
where M(n, m) is the linear transport matrix [3jom point m

to pointn.
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Fig. 1: Sketchof the beam-beantollisions aroundthe ring.
n=0 representsthe main collision at the IP. The others
collisions are parasitic. The beam moves in the direction
indicated by the arrow.

The beam-beamtune shift Av and the dynamical beta
function B' at the IP are extracted from the usual formulas

cos(2m(v + Av)) = tr M’(0)/2 (3)
i~ MO
F= sin(2m(v +Av)) )

wherev is the unperturbed, or “batattice,” tune. For a range
of valuesof the tune, definedby v_ < v<v,, the right-hand
side ofEq. (3) is largerthan 1 in absolutevalue,andhencea
stopband appearAy reaches a finite limit at both edgestbé
stopbandwhile ' is infinite at v_ andzeroat v,. For a
single kick of strength &,, v, =p/2 (exactly), and
v_=p/2-2&, +O(&5), wherep is an arbitrary integer.
Taking the PCs into account[2] we obtain, to lowest-



ordef in the&'’s,

Av = ifn+--- 5)
n=-4
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where Ag, is the phase advances,modulo 2mnv, of the
collision points relativeto the IP. If the optics of the IR is
symmetricalaboutthe IP, asis the casein PEP-II, then the
stopband edge¥,. and widthdv = v, — v_ are given by [2]
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3 APPLICATION TOPEP-II

The input tothe calculationis the setof &'s andAg's for all

collisions. The lattice functions #ihe PCs do not enterif the
calculation is carriedut in locally-normalizedcoordinateg2].

The &'s are computedfrom the usual formulas; numerical
valuesfor the high-energybeam (HEB) and the low-energy
beam (LEB)arelisted in Ref. [1] (the latticesare different for

the two rings). The key parametelis &,, the nominal beam-
beam parameter at the IP; it has the value @0®oth beams
in both planes. At the PC<,, 0 d.“; the strongesPC is the
first one, for which the beam separation is the smallest.

3.1 Results for typical bunches

Figure 2 showsthe tune shift for a typical bunchplotted vs.
the bare lattice tune. One seesthat the vertical tune shifts,
particularly that of the LEB, are clearly higher than the
nominal beam-beanparametewalue of 0.03. The horizontal
tune shift becomessmall just above the integer (or half-
integer),andthe vertical tune shift becomesmall just below
the half-integer (or integer).

The location andwidth of the horizontalstopbandscanbe
well understood from Egs. (7-8). The downshiftgted vertical
stopbands are accounted for by thet that the vertical £'s are
>0. It is interestingto note that the PCs tend to make the
stopbandsiarrower than if they were due the IP alone.This
is particularlytrue for the vertical stopbandsfor which this
narrowingis explainedby noting that the A¢'s are all very
close torr2, hencecos2Ag, = -1 in Eq. (8). The remarkable
(but approximate) coincidence of the four lower edgesf the
stopbandss dueto a numericalaccidentinvolving the values
of the phaseadvancesand the beam-beanparameterof the
PCs.

1Eq.(4.49) in Ref.[3] hastwo sign errorswhich, unfortunately,
have propagatedthrough much of the literature. The equations
leading up to(4.49) are correct, but thereis a trigonometric error
at the very last step of the derivation. Our Eq. (6) is the correct
result for discrete kicks.
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Fig. 2: The horizontal andertical beam-beantune shift for a
typical bunch as a function of the correspondingtune for
nominal PEP-1I parameters. The figuseperiodicin v with a
period of 0.5.

Figure 3 showsthe dynamicalbeta functions, normalized
to their nominal values, plotted viine. One canseethat the
dynamical beta functions are smaller than their nominal
counterparts for tund¥0.25. This is qualitatively explaindaly
the dominance ofhe IP term (n=0) in Eq. (6), since cot2mnv
is >0 for v<0.25. The difference betweenthe four curvesin
Fig. 3 is dueto the PCs:if the PCs were ignored, the four
curves would overlap.
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Fig. 3: The horizontalandvertical normalizeddynamicalbeta
function for a typical bunch asfanction of the corresponding
tune for nominal PEP-1l parametersThe figure is periodicin
v with a period of 0.5.



3.2 Results for pacman bunches.

Figure 4 shows the beam-beam tune shifts foffitlse pacman
bunch, i.e., the bunch at the headof the train. This bunch
experienceshe main collision at the IP plus the PCs at one
side of the IP only. By symmetry,the results for the last
bunch at the tail of the beam are identicatitosefor the head
bunch.

The beam-beantune shifts for the other pacmanbunches
are in between those for the first pacman bunchtaosefor a
typical bunch.By comparingFigs. 2 and4, one canseethat
thereis almost no differencefor the horizontal tune shifts,
sincefor thesethe PCs are quite negligible. For the vertical
tune shifts, the effect of the PCsfor the first pacmanbunch
are, roughly speaking,about half as strong as for a typical
bunch, hence the valuésr the tune shifts are abouthalf way
in between the horizontal values and thoseaftypical bunch.
By the samereasoning,the horizontal normalizeddynamical
beta functions for the head bunch (not shown) are almost
exactly the same as those for a typical bunch, while the
vertical normalized dynamical befanctionsare somewherén
between the horizontal values and those for a typical bunch
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Fig. 4: The horizontal and vertical beam-beantune shift
for the first pacmarbunch,as a function of the corresponding
tune for nominal PEP-1l parametersThe figure is periodicin
v with a period of 0.5.

3.3 Results when only the first PCs are considered.

The effect on thddeamdynamicsof the beamseparatiord; at

the first PChasbeenextensivelystudiedby simulation[1,4].

Figure 5 showghe beam-beantune shifts of a typical bunch
plotted vs.d;. In this calculation all PCs beyortde first have
beenneglectedthe first PC is significantly strongerthan the

others [1]), and, is taken as a free parameter. One cartlsme
the vertical tune shift, particularlythat of the LEB, becomes
large quickly as the beam separation decreasesfrom its

nominal value.
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Fig 5: The beam-beantune shifts of a typical bunch as a
function of the beamseparationat the first PC. The beam
separation is normalizett the local nominal horizontalbeam
size of the LEB. The fractional tunes are fixed at (v,
1)=(0.64, 0.57) for both beams, aall otherparametersiave
their nominalPEP-Il values.The arrow indicatesthe nominal
separation, as specified in the CDR [1].

4 CONCLUSIONS

We concludethat: (1) It is advantageouto choosea working
point just abovethe integeror the half-integer becausethe
dynamical beta function is smaller than nominal grelbeam-
beam tuneshift is smallerthanthe beam-beanparameter(2)
The vertical beam-beamtune shifts and dynamical beta
functions, especially those of the LEB, are much more
sensitive than the horizontal ones to the beam separatiba at
PC: for small enoughseparationpoth the tune shift and the
dynamicalbetafunction becomelarge, undoing the favorable
effect of the choiceof the working point. (3) The tune shift
and the dynamicalbeta function as a function of the beam
separation at the first PC for a fixegbrking point showsthat
the vertical quantitiesare quite sensitiveto d;, a resultwhich
correlates well with the beam blowup observedinltiparticle
simulations [1,4].
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